福建22选5开奖结果

報告時間:2019年9月1日10:00

報告地點:數學院會議室(玉衡北302)

報告題目:Principle Component Analysis and Euclidean Distance Matrix Optimization

報告人簡介:英國南安普敦大學戚厚鐸教授

報告摘要:Principle Component Analysis (PCA) is probably the most widely used statistical method for data analysis and dimensionality reduction. As early as in 1960s, it was claimed that Principle Co-ordinate Analysis (PCoA) is more powerful than the traditional PCA. This talks ponders on its implications and begins with a brief (technical) introduction of both PCA and PCoA, in particular, on their link to optimization. When data was grossly corrupted or missing, the robust PCA has become a major approach to recovering the true data and is surprisingly successful under reasonable conditions. In contrast, the line along PCoA has been lacking in good progress. We argue that Euclidean Distance Matrix optimization may provide a key to further developments.



版權所有 湖南第一師范學院數學與計算科學學院

地址:長沙市岳麓區楓林三路1015號  郵編:410205 電子郵箱:sjy@hnfnu.edu.cn

<menuitem id="n5vd5"></menuitem><ins id="n5vd5"><noframes id="n5vd5"><del id="n5vd5"></del>
<ins id="n5vd5"><noframes id="n5vd5"><ins id="n5vd5"></ins>
<cite id="n5vd5"><span id="n5vd5"></span></cite>
<ins id="n5vd5"><noframes id="n5vd5"><cite id="n5vd5"></cite>
<del id="n5vd5"></del><var id="n5vd5"></var>
<ins id="n5vd5"><noframes id="n5vd5"><ins id="n5vd5"></ins>
<cite id="n5vd5"><span id="n5vd5"></span></cite>
<ins id="n5vd5"><noframes id="n5vd5">
<ins id="n5vd5"></ins>
<ins id="n5vd5"><noframes id="n5vd5"><cite id="n5vd5"></cite><del id="n5vd5"><noframes id="n5vd5"><ins id="n5vd5"></ins>
<ins id="n5vd5"><noframes id="n5vd5"><ins id="n5vd5"></ins><cite id="n5vd5"><span id="n5vd5"></span></cite>
<var id="n5vd5"><noframes id="n5vd5">
<var id="n5vd5"><noframes id="n5vd5"><var id="n5vd5"></var>
<ins id="n5vd5"></ins>
福建22选5开奖结果 二八杠游戏平台 天王彩票|手机app下载 广东11选5一定牛 六福彩票|手机app下载 真人龙虎游戏 紫金彩票|官网登录 紫金彩票|官网登录 天王彩票|官网登录 广东36选7走势图 天王彩票|手机app下载 红中彩票|手机app下载 浙江15选5走势图 天津15选5开奖结果 浙江36选7走势图 好运彩票|官网登录